
Simulation Review

Jim Kowalkowski, Marc Paterno, Pekka Sinervo

1 Introduction
This document contains a summary of our review of the CDF simulation software. We have concentrated
on the plan for redesign summarized on the web by Pasha Murat, and presented at the review kick-off
meeting by Chris Green. The plans for redesign include integration with the CDF geometry system, initiali-
zation of the GEANT3 geometry from the CDF geometry system, and the introduction of a framework for
digitization. In conducting this review, we did not study details of the existing simulation code for the pur-
pose of commenting on its content and structure. We have concentrated on understanding what the current
simulation package does, and have considered what design modifications might enhance the maintainability
and extensibility of the code.

In this document we cover, from a high level, the following “ tasks” performed during simulation:

• the presentation of the CDF detector geometry to the physics simulation engine (currently
GEANT3);

• the handling of callbacks from the physics simulation engine during the propagation of particles
through the detector, to register the required “digitization” information in the detector elements;

• the finalization of the simulation of an event, including such tasks as smearing and the creation of
raw data objects for each subdetector.

We have concentrated on making the execution of these tasks simple from the point of view of the imple-
mentor of the code for a subdetector, and secondarily from the point of view of the implementor of the
simulation infrastructure. We have also concentrated on enhancing the speed of the callback process, since
that is the most time-critical part of the system, and upon the ease of configuration of the entire system. We
make few comments on the subject of recording “MC truth” information about the simulated particles, due
to lack of time.

2 Overview
The old simulation system1 contains several elements that are incompatible with the current CDF infra-
structure code. The new simulation framework design addresses many of these incompatibilities. For this
reason, our overview of the system and our proposals address the new system.

The new framework consists of two AC++ modules:

• SimInitManager, which is responsible for the initialization of the GEANT3 geometry, and

• SimulationControl, which is responsible for the digitization and readout of the detector elements.

This framework defines a common interface for digitizers that provides for common ways to digitize a hit
and to populate the event with raw data objects.

During the course of the review, we tried to simplify the system by demoting SimInitManager from an
AC++ module to a tool intended for use by one or more modules. In the end, we came to agree that
SimInitManager should remain an AC++ module, because of the requirement that simulation and extrapo-

1 In this document, we will refer to the body of code written primarily by Pasha Murat as the “old” system, that written
by primarily by Chris Green as the “new” system, and the design proposed in this document as the “proposed” system.

CDF Simulation Review 2

lation use a consistent description of the CDF geometry. The most convenient method of assuring that the
initialization is done once is to have a framework module control the initialization. The status of SimInit-
Manager as a subclass of AppModule also provides for a talk-to interface for the configuration of the
simulation geometry (i.e., the declaration of each detector element as either “active” or “passive”).

We believe that Chris has valid concerns about the lookup time involved in locating the correct digitizer in
the particle propagation procedure. We believe that improvements can be made in this area. These im-
provements will come at a cost; that cost being higher memory requirements and a more complex infra-
structure. We believe the benefits will outweigh the costs.

2.1 Definitions
In this section, we present a few definitions that will be used throughout the remainder of this document.

Concept and model: These are generic programming2 terms. In the context of this review, a concept can be
thought of as a list of type requirements. A type T is said to be a model of a concept

�
 if T satisfies all of

the requirements of � .3

For example, one of the basic concepts introduced with the STL is the concept �������
	 � ������������
���
��	 � . A
type is �������� ! "�#%$�&�'�(���)*�
+� , if it is possible to compare two objects of that type for equality using op-
erator==, and if operator== is an equivalence relation (i.e., it satisfies the requirements of identity, re-
flexivity, symmetry, and transitivity). All the primitive types of C++ are models of -�.�/�0�1 2 3�4�5�6�7�8�0�9*0
:; 1 < . User-defined classes are models of =�>�?�@
A B C�DFEHG�I�J�@
K*@�L�A M only if they have defined, either as a
member function or as a free function, operator== with the required properties.

In our design proposal, we define several concepts for which the each digitizer class (written for each sub-
detector) must be models.

Digitizer: a digitizer class is a class that models the concept N�O P�O Q�O RTS
U�V W , described in Section 4.1.4. A
digitizer is an instance of such a class. The purpose of a digitizer class is to turn the information generated
by the simulation engine during particle propagation into hit information in the simulated detector ele-
ments. Additionally, each digitizer class must provide a series of typedefs required by the proposed system.

2.2 Assumptions
The design changes outlined in this document required us to make certain assumptions. We list the as-
sumptions here, to make them explicit.

• A structural change in the CDF geometry tree must be followed by a complete rebuilding of the
simulation geometry and the digitizer framework. By structural change we mean deletion or inser-
tion of physical volumes or detector elements.

• Each CDF physical volume corresponds to exactly one physical volume of the simulation engine
(e.g., GEANT3). Each physical volume is contained within exactly one CdfDetectorElement; no
physical volume spans two CdfDetectorElement instances.

• It is acceptable to have a one-to-one relationship between CdfDetectorElement instances and digi-
tizer instances. This is different from both the old and new designs, which contain many CdfDe-
tectorElement instances for each digitizer.

• Every digitizer class is associated with exactly one raw data class. This raw data class must be a
StorableObject, so that it may be added to the event. The raw data class implementation is up to
the developer. The calorimeter, for example, could choose to use the CalorData object (based on

2 For an excellent introduction to generic programming, see Generic Programming and the STL, by Matthew H.
Austern (Addison-Wesley, 1999).
3 Throughout this document, we will use italics for class names, and a XZY\[]_^a`\b\^dcd^aegfdh igidY\b�j for concept names.

CDF Simulation Review 3

tower energies) instead of using the D-Banks directly. The CalorData object produces raw data
banks on demand from the tower energies. The silicon detector can use the SiStripSet in a similar
fashion. It is also possible for one detector subsystem to have more than one kind of digitizer.

2.3 Required Modifications to Related Systems
The design changes outlined in this document require the system to behave in the following ways:

• Instances of subclasses of CdfDetectorElement must be able to return the name of their class. This
feature is needed to support our proposal for configuration of the system.

• Factory registration of digitizers must be permitted. This registration will be similar to the method
used by ROOT and the calibration database subsystem. The coupling of digitizers and the digi-
tizer framework and simulation control module will be in name only. This implies registration us-
ing standalone object files, shared object libraries, or the presence of special entries in the users
AppUserBuild method.

3 Major Areas of Concern
Our primary concern with the “new” system is the complexity of the task faced by someone responsible for
the introduction to the simulation of a new subdetector, or that faced by someone responsible for introduc-
ing a new method of digitization for an existing subdetector. As a secondary issue, we were concerned with
the efficiency of the mechanism that performed the lookup of callback functions during the process of par-
ticle propagation. Third, we did not understand how the system would be started except through hard-
coding of the system configuration by end users, which we judged to be too inflexible. Finally, we thought
that the relationship between one digitizer and one subdetector system was too rigid.

The design we propose addresses each of these concerns. As a side effect, the mechanism by which the raw
data objects are produced is more complicated than in either the old or new designs. We think that the
added flexibility is worth this added complexity.

In this section, we address each area of concern and describe how our proposed design deals with it. In
Section 4 we present our proposal in more detail.

3.1 Configuration of simulation by user:
Since the simulation will be used by more than just its designers and implementers, care must be given to
make it easy to run in a variety of situations.

• It must be easy to specify the values of the parameters (e.g., smearing constants) for each of the
digitizers.

• It must be easy to specify which digitizer class will be used for each subdetector components.

• It should be easy and efficient to run several digitizers simultaneously for a given detector ele-
ment. This allows simple comparison between digitizer outputs; for example, to compare two dif-
ferent calorimeter energy smearing choices. This would allow a comparison to be done at the hit-
by-hit level, rather than only allowing comparisons of distributions.

Our proposal describes the configuration of the system using a simple ASCII table, perhaps read from a
file. It would be possible (though perhaps more complex, with little gain in functionality) to replace this
table with a set of AC++ parameters, read in the form of a TCL script.

In addition to describing the large-scale configuration of the system, it is necessary to set the parameters of
each individual digitizer. This should be handled by a standard mechanism. In our proposal, we indicate
this by having each SimElement instance contain an APPCommand*. In our proposal, these APPCommand
pointers are managed by the SimulationControl module, and can thus be used in the configuration interface
of that module. The exact mechanism through which this is to be done must be determined in consultation
with the infrastructure group.

CDF Simulation Review 4

3.2 Creation and Integration of digitizers:
It should be easy for a developer to write a digitizer that will integrate easily into the system. To achieve
this goal, we have introduced the concept kHl m�l n�l oTp
q�r s . tHu v�u wxu yTz
{�| } defines a uniform interface to which
all the digitizers must conform, and which assures that the digitizer can be created, configured, and used by
the system without modification.

3.3 Efficient Stepping in the Simulator:

3.3.1 Digitizer Lookup
We will call the process of particle propagation in the physics simulation engine stepping. The stepping
procedure in the simulator be called thousands of times per simulated event, so it is essential that this proc-
ess be efficient. One of the concerns raised during the initial presentation of the new system was that proc-
ess of locating the appropriate digitizer might be too slow. Our proposal employs a larger number of digi-
tizer instances, so without other changes the problem would be even more severe. For this reason, the
digitizers must be organized in a data structure that permits a minimal amount of searching in the stepping
procedure.

3.3.2 General Concerns
Because it will be called so frequently, it is important to avoid needlessly repetitive tasks in the stepping
function. To give a specific example, in gustep_simTest(), we see something which we must be careful to
avoid. The code fragment in question is the following:

// We’re going to need the outer radius of the COT to decide whether
// or not we are interested in secondaries:
const CdfTubs* cotContainerShape = dynamic_cast<const CdfTubs*>
((*CdfDetector::instance()->
getCotDetector()->
beginningPhysicalVolume())->
getLogicalVolume()->
getShape());
double cotOuterRadius=0,cotZHalfLength=0;
if (cotContainerShape)
{
cotOuterRadius=cotContainerShape->getOuterRadius();
cotZHalfLength=cotContainerShape->getZHalfLength();

}

It seems that the value retrieved from the CDF geometry is the same at every step. It would be more effi-
cient to obtain the value of cotContainerShape once, and to cache the value. The value only needs to
be recalculated when the geometry is changed (at which time the entire digitization system needs to be re-
built).

Also, while the code above is careful to use a dynamic_cast on the pointer returned by CdfDetec-
tor::instance(), and to use it only if the dynamic_cast is successful, what action is taken if the dy-
namic_cast fails? The system should probably fail gracefully, indicating to the user that a configuration
error has prevented proper initialization of the geometry.

3.4 Ability to swap out the simulator.
The ability to change to a new physics simulation engine such as GEANT4 in the future is highly desirable.
In the new system, the scope and magnitude of code modification required to introduce a new simulation
engine is unclear. In our proposal, we have isolated the dependency on the simulation engine to the concept~Z�������������

. As long as the simulation engine proceeds by propagating individual particles by steps, and
is able to identify the physical volume in which each step occurs, it should be possible to use the simulation
engine in the proposed framework.

CDF Simulation Review 5

3.5 Monte Carlo Event Data Storage
The output from the generator and the particles generated by the simulator need to be recorded in objects
compatible with the CDF EDM package. Because the simulator will need to add new particles generated by
the simulation process to the event, and perhaps to modify particles in the original input, special care needs
to be taken to deal with the immutability of StorableObjects in the event.

3.6 Initialization of geometry
The SimInitManager AC++ module must use the information in the CDF geometry system to initialize the
physics simulation engine (GEANT3) geometry. Because SimInitManager is an AC++ module, it is proba-
bly not important for it to have the flexibility to be able to produce the geometry for another simulation
engine (e.g., GEANT4). Instead, a different class (perhaps SimInitManagerG4) could be introduced when
needed.

3.7 Control over the simulation.
The SimulationControl AC++ module must be able to initiate the configuration of the digitizer framework,
initialize and feed the simulation engine (GEANT3) the particle information, and control the digitizer read
out. In addition, it must be able to allow the user to interact with the digitizers and the simulator.

3.8 Raw Data Generation
SimulationControl must produce raw data objects (instances of subclasses of StorableObject), and insert
them into the event. In the new system, this is done at the subdetector level. A more fine-grained approach,
which allows for the generation of different formats for the raw data from each subdetector, would be pref-
ereable.

3.9 Random Numbers and Histogramming
During the first review meeting, it was stressed that a facility for generating random numbers according to
an arbitrary distribution (described by a frequency distribution encoded in a histogram) is needed. It should
be possible to gain this functionality at slight cost (perhaps by a slight enhancement of the ZOOM random
number generator product). It should not be necessary to add the entire machinery of ROOT, merely to be
able to use a subclass of ROOT’s TH1 for the generation of random numbers.

4 Design Recommendations

4.1 Overview
The design we propose is actually a framework for performing detector simulation. This framework makes
extensive use of C++ templates, to be written by the core members of the CDF simulations group. This
design allows the task of writing the detector-specific code to be as simple as possible, while retaining a
great deal of flexibility.

This flexibility is achieved mostly by having the class responsible for the event processing (Simulation-
Control) define a series of functions describing the pieces of the tasks to be performed. The digitizer
classes, to be developed by the subdetector experts, implement these functions. This allows new digitizers
to be introduced without requiring widespread changes in the system.

We have chosen to base our design largely on the use of templates (generic programming) rather than
solely in object-oriented terms, in order to gain maximum efficiency while simultaneously achieving loose
coupling between classes and retaining strong type safety.

One of the goals we had in mind when laying out our proposed design was to reduce the number of ab-
stractions that the developer is required to understand. Another goal was to reduce the number of levels in
the inheritance hierarchy. We believe that a framework cast into a templated design fulfills many of these

CDF Simulation Review 6

goals. We also believe that it is easier to write high-level tools that utilize the framework elements directly
than it is to write a single, high-level, generic object that works with a bunch of abstract elements.

4.1.1 Generator and Simulator Output
The collection of particles presented to the physics simulation engine and the collection that is a result of
the processing done by the simulation engine must both be contained in classes inheriting from Storable-
Object, so that they may be stored in the event. Rather than inventing new Monte Carlo event classes, we
recommend working with the Computing Division simulations group to develop the C++ version of
STDHEP. If collaboration between the CD simulation group and CDF can be arranged, we will of course
be ready to assist with the development of the design.

We recommend that the StorableObject output of the generator be placed into the event and not be change-
able by the simulation. We recommend that the output of the simulator be an object that is placed into the
event and follow the same format as the output of the generator. The output of the simulator should refer to
data in the generator output object a CDF EDM compliant manner.

4.1.2 Geometry Initialization
The purpose of the classes in this subsystem is to initialize the CDF geometry and to present that geometry
to the physics simulation engine. To achieve optimal efficiency in the stepping process, the digitizer
framework design outlined in this document requires that a list of detector element / physical volume pairs
to created. The digitizer framework configuration process is driven by names and IDs of detector elements
and physical volumes. As the tools in the section are walking the CDF geometry tree and creating the
simulation specific physical volumes, this large list must be created and stored in a place that simulation
control can access.

4.1.3 Simulation Control
The class SimulationControl is the main coordinator. It has the job of constructing the elements of the
simulation framework, and of configuring them. It must initialize and configure the digitizer framework. It
must feed data to the simulator and round up output from the digitizers and the simulator.

4.1.4 Digitizers
Subdetector experts are the users of the simulation framework, in that the classes they define use the fea-
tures of the framework to define the high-level SimulationControl class. We’ ll refer to these individuals as
developers, to distinguish them from the users who will run the simulation, but do not develop new digitiz-
ers.

Developers create digitizer classes. In this system, there is no base class for a digitizer. A digitizer is a class
that conforms to a set of rules, defined by the concept �H� ��� �x� �g�
��� � (described in Section 4.2.4). Conform-
ing to the rules allows the digitizer class to be plugged into the system. The specific rules are explained in
the next major section of this document. A digitizer, in general, must describe four pieces of data that it will
work with:

• The physics simulation engine stepping data structure. This is the simulator-specific data
available at a given step. It could be as large as the entire suite of GEANT3 common blocks or as
specific as a translated physical volume coupled with the energy value, or the appropriate class de-
fined by GEANT4.

• The event level raw data structure that it deposits its energy or ADC counts into.

• The detector element type it is associated with.

• The AC++ command class used to configure it.

All these types must be defined as typedefs in the developer’s digitizer class. A digitizer class has a special
relationship with each of these types that it refers to. Some of these relationships have already been touched

CDF Simulation Review 7

upon in Section 2.2. Understanding the relationship between the digitizers and the classes it refers to is cru-
cial to understanding how the system works. Here is a summary of the relationships:

• One digitizer instance is associated with precisely one instance of a subclass of CdfDe-
tectorElement. For each digitizer type there is one associated subclass of CdfDetectorElement.
This keeps the responsibilities of a single digitizer down to a minimum. It also allows for quick
access of the correct digitizer for a detector element.

• Many digitizer instances are associated with one AC++ command class instance. It is as-
sumed that many digitizer instances will share the same constants. For example, if the detailed
calorimeter geometry describes a tower, and therefore has a digitizer type for each tower type,
then all the towers for a given eta will likely share the same smearing constants.

• Many physical volume instances may be associated with one digitizer instance. Several
of the sub-detectors will have detector elements that are composed of many physical volume
“children” . The digitizer must know something about the physical volume structure associated
with its CdfDetectorElement, because the stepping process will call on the digitizer for each parti-
cle step, in each physical volume known to the simulation engine, and the digitizer must respond
appropriately.

• Many digitizer instances are associated with one raw data object instance. For example, if
the detailed calorimeter geometry identifies each tower as a detector element and therefore each
tower type has a unique digitizer, then a single instance of a raw data object could represent all the
energy deposited in the entire central calorimeter. In this situation, the raw data object would span
several tower types (digitizer types) and many instances of digitizers.

The developer of a digitizer is required to create a digitizer class that conforms to the digitizer rules. In ad-
dition to this class, the developer is required to create a class derived from APPCommand that will be used
to configure the digitizer. The developer must identify the raw data object that will be used during the read-
out procedure, this class is likely to already exist in the subdetector software as part of the reconstruction.

4.1.5 Configuration
The purpose of this subsystem is to present the user’s digitizer configuration to the simulation control. The
user is required to supply a table that relates detector element names to digitizer class names. This is actu-
ally more complex then it sounds due to the fact that the relationships described in the digitizer section
must be described in this file. Another complexity is that many digitizers can be active for the same detec-
tor element as the same time; this must also be described in the configuration file. The file has three white
space separated fields: detector_element_class_name, digitizer_class_name, set_name. Digitizers are reg-
istered in a factory by class name, so that simulation control can create instances of digitizers given only
the class name in the configuration file. The set_name defines a group of digitizers that all contribute to a
single raw data object (as described in the digitizer section). The system will, at run time, insure that all the
digitizers refer to the same raw data object type. All the digitizers in a set will be contribute to a single in-
stance of a raw data object that will be placed into the event. Here is a simple fictional configuration file:

detector_element_class_name digitizer_class_name set_name

CdfHalfLadder G3PadovaDigi SiliconSet1

CdfHalfLadder G3PadovaDigi SiliconSet2

CdfHalfLadder G3NewMexicoDigi SiliconSet3

CDF_CEM G3CEMDigi Cal

CDF_CHA G3CHADigi Cal

This example shows three important aspects of the system:

CDF Simulation Review 8

• It shows the ability to specify that two instances of one same digitizer class for the same detector
element (presumably to run with different smearing constants) can be configured.

• It shows the ability to specify two different digitizers for the same detector element.

• It shows the ability to specify two completely different digitizers contributing to the same raw data
object instance.

As mentioned in the Digitizer section, command objects are associated with group of digitizers. To deter-
mine what is the group of digitizer instances corresponding to a single AC++ command instance, we con-
catenate the digitizer_class_name together with the set_name. This insures that similar items are configured
with the same constants by the same AC++ command object instance.

4.1.6 Raw Data Readout
From the SimulationControl level, raw data readout it straightforward – just poke the system at the right
spot. Internally it is one of the more complex subsystems. As digitizers are created using the geometry and
configuration file as a guide, they are assigned to readout groups by set_name, which corresponds to a sin-
gle instance of a raw data object class to be produced. All the readout groups are recorded within the simu-
lation control object. For any set_name, one can ask what instances of digitizers contribute to its raw data
object. The readout group can be given an event and told to perform the readout. This procedure is defined
in Sections 4.2.6 and 4.3.3.

4.1.7 Simulation Stepping
The design in this document reduces the search for the proper digitizer instance down to one data structure.
This is a conscious tradeoff, using more space (memory) in order to gain greater speed. For each physical
volume uniquely identified by the simulator, there is a corresponding entry in a lookup table that maps di-
rectly to a digitizer/detector element pair. When the digitizer is invoked it is given a detector element of the
correct type; no casting is necessary. The design can easily be tweaked to include the CDF physical vol-
ume, so that the digitizer developer does not need to go to GEANT3 common blocks to read this informa-
tion. The stepping procedure contains code that works with the generalized digitizer abstractions, which
means it should never need to be changed when new digitizers are introduced or reconfigured. The stepping
procedure relies on the data structures maintained by the digitization framework.

4.1.8 Digitization framework
All aspects of digitization are captured in the digitization framework. This includes initialization and con-
figuration, raw readout control, and access within the stepping procedure. The framework maintains several
data structures that allow various pieces of the reconstruction to efficient navigate the digitizer instances. In
our proposal, there are four maps maintained here. These allow the framework to efficiently perform the
following tasks:

• Get a digitizer given a simulator specific physical volume identifier.

• Get a digitizer given a CDF geometry physical volume identifier.

• Get the readout group associated with a given set name.

• Get a command associated with a group of digitizers.

The framework owns the all the digitizer instances, command instances, and any required readout helper
instances. Developers do not have to worry about resource management issues for any framework objects.

4.1.9 Factory
The factory allows for the creation of digitizer instances without undue link-time dependencies. Given a
digitizer class name, the factory returns an instance in its generalized (abstract, interface, or base class)
form. In this design, it is actually a wrapped, abstract form. The factory serves two important functions in

CDF Simulation Review 9

this design. It allows for name-only coupling of digitizers to the digitization framework libraries. This
means that the framework support tools never actually know about or see the individual digitizer classes.
The factory allows for the system to be configured using a text based table. This means that uses users can
easily reconfigure and operate the digitizer framework with recompilation of the executable. The factory is
used by the digitization framework during the initialization procedure.

The factory is the least defined part of the system. We propose a system similar to the one used in the cali-
bration database system. This factory has additional requirements in that it must be able to create instances
of objects associated with the digitizers, such as APPCommands and raw data generator management class
instances. Extreme care must be used during the creation of this part of the system. It must be easy for the
user to register a digitizer class with the factory. The registration of user classes must not introduce (or use)
any templates or the KAI template mechanism can get confused (if standalone object files are used, as in
the calibration database).

4.2 Description of Classes and Relationships
Accompanying this document is a series of class diagrams that show all the major classes required to create
the framework outlined here.

4.2.1 MC Particles and Vertices
We do not present a proposed design for this subsystem. Instead, this design warrants review in its own
right.

4.2.2 Simulation Control
• SimulationControl: This AC++ module must contain an instance of SimDigitizers (the digitization

framework class). It must also utilize the instance of IDPairList produced by the geometry initiali-
zation module to initialize the digitization framework.

• �Z������������� : This is a concept definition. Many of the classes outlined in this document are tem-
plated on types that must be a model of ��������������� . The purpose of this templating it to allow
the framework to be reused with other simulators. In the GEANT3 case, the �Z������ �¡���¡ type
could be simply a struct with pointers to common blocks in it. A digitizer will get passed a pointer
to ¢Z£�¤�¥�¦�§�£�§ in the simulator stepping procedure. It is up the stepping function to manage the¨Z©�ª�«�¬��©�

 instances and pass them to the digitizer framework.

• IDPairList: This is a list containing information for each CDF physical volume (PV) / CDF de-
tector element (DE) registered in the simulator geometry. The list relates a simulator identifier to a
PV/DE pair. This list is use to drive the generation of digitizer instances. It is also used to create
the fast access map used in the simulator stepping function.

4.2.3 Geometry Initialization
• GeometryManager: This is the standard CDF geometry management module included with Fra-

meMods.

• SimInitManager: This AC++ module produces the simulator geometry by walking through the
CDF geometry tree. It should have the responsibility of creating the IDPairList. Passing the ID-
PairList to the SimulationControl module could present a problem since we do not want to store
this information in the event.

4.2.4 Digitizers
The digitizer class must implement several methods that carry out the digitization process, and must define
several typedefs. The concept ®�¯ °�¯ ±�¯ ²T³
´�µ ¶ presents the requirements for all digitizer classes. ·�¸ ¹�¸ º�¸ »T¼
½�¾ ¿
makes use of several other concepts, which we list below.

CDF Simulation Review 10

• À�Á�ÂÄÃ�Á�Å�Á : This concept defines what is required from all raw data types. Types that modelÆ�Ç�ÈÄÉ�Ç�Ê�Ç
 must inherit from StorableObject. They must be able to append new “pieces” of data

(e.g. calorimeter tower or silicon strip) which are accumulated during the digitization process to an
existing instance. A type that is a model of ËHÌ Í�Ì Î�Ì ÏTÐ
Ñ�Ò Ó must present a typedef raw_data_type,
which yields a type which is a model of Ô�Õ�ÖÄ×�Õ�Ø�Õ .

• Ù�ÚZÛ�Ú�Ü�Û�Ý_Þ�Ú�ß�Ú�àáÚ�â�Û : This concept defines what is required from all detector element types.
Types that model ãHäZå�ä�æ�å�ç_è�ä�é�ä�ê%ä�ë�å must inherit from CdfDetectorElement. A type that is
a model of ìHí î�í ï�í ðTñ
ò�ó ô must present a typedef detector_element_type, which yields a type which
is a model of õHöZ÷�ö�ø�÷�ù_ú�ö�û�ö�ü%ö�ý�÷ .

• þ�ÿ��������	�
� : This concept defines what is required from all configuration data types (the classes
which are used to configure digitizers). A type that is model of ����������	�
� must inherit from
APPCommand. A type that is a model of ��� ��� ��� �����	� must present a typedef configura-
tion_data_type which yields a type that is a model of !�"�#�$&%�'	(
' .

•)+*
,.-./�0	*
0 : This concept defines what is required from all particle propagation information data
types. A type that is a model of 132�465.7�8	2
8 must provide all the information (specific to a par-
ticular physics simulation engine) concerning the result of a single particle step. A class that is a
model of 9+:�;6<.=�>	:
> must also present a typedef PhysicalVolumeID, which yields the type of
object (or primitive type) that is used by the physics simulation engine to identify an individual
physical volume. A type that is a model of ?�@ A�@ B�@ C�D�E�F G must present a typedef step_data_type
which yields a type that is a model of H3I
J.K.L�M	I
M .

• N�O P�O Q�O R�S�T�U V : This concept defines what is required from all developer-written digitizer types. A
type that is a model of W�X Y�X Z�X []\&^	_ ` must present all the typedefs listed above, which identify the
types that the digitizer is designed to work with. A type that is a model of a�b c�b d�b e�f�g	h i must also
provide the member functions shown for the type j�k l	k mnk o]p�q�r s in the accompanying class dia-
gram.

• digitizeHit() takes the specific detector element and the step data as arguments. This
method may need to also take as an argument the physical volume and a flag indicating whether or
not the simulator has entered, exited, or is stepping through the volume. Alternatively, the digit-
izeHit() method can be broken into three methods: one for entering a volume, one for stepping
through a volume, and one for exiting a volume.

• appendToRawData() is expected to place the energy or hit information accumulated so
far into the raw data object passed in as an argument.

• clear() should clear out any of the cached energy or hit information present in the digi-
tizer.

• configure() is meant to reset parameters for the digitizer. This method is likely to be un-
necessary if the digitizer just uses the command that is associated with its instance to read out the
parameters each time they are needed. If the parameters are to be read all the time, then the con-
structor will need to take an argument of configuration_data_type.

4.2.5 Configuration
• ConfigFileReader: This is a simple tool used to read in the contents of the digitizer configuration

file. This class presents the contents of the file as a table or map of detector element names to a list
of (digitizer name, set name) pairs. Each unique detector element name in the file can correspond
to many digitizer/set name pairs. This data structure directly reflects this. Given a detector element
name, this class returns the list of pairs associated with it.

CDF Simulation Review 11

4.2.6 Raw Data Readout
• AbsGenerator: An abstract base class that defines an object that can contribute to the generation of

raw data. This class has no interface; it is only used to identifier classes that can fulfill raw data
generation duties in their derived form.

• Generator<RAWTYPE>: This is a class derived from the AbsGenerator and templated on the type
of raw data object that it contributes to. This class implements a method called populate() which
is called when it is time to fill a raw data object.

• AbsGeneratorElement: This is an abstract base classes that represents a set or group of digitizers
that all contribute to one raw data object. The method addToEvent() requests that the underlying
set (implemented in the derived class) run through all the data generators that it holds and create a
single raw data object that it will add to the event. The method addGenerator() requests that the
underlying class add a generator to the list of data generators that it holds.

• GeneratorElement<RAWTYPE>: This is class derived from AbsGeneratorElement that actually
holds the list of AbsGenerator instances. It is also templated on the raw data object. This class im-
plements addToEvent() and addGenerator(). The method addGenerator() first converts the very
basic AbsGenerator to the more specific Generator<RAWTYPE> form so that it can access the
populate() method. The method addToEvent() creates an object of type raw_data_type, passes it
to each of the Generator<RAWTYPE> objects it holds, and the adds the object to the event.

4.2.7 Digitization Framework
• AbsSimElement: An abstract base class used to indirectly describe any digitizer to the system. The

digitizer framework holds on to the digitizer instances in this abstract form. The public interface of
this class allows the system to digitize a hit and clear the digitizer. The interface also allows one to
locate the APPCommand used to configure the digitizer.

• SimElement<DIGITIZABLE>: This is the central class in the digitizer framework. It is a wrapper
around a developer’s digitizer that allows the digitizer to plug into the system and be used cor-
rectly. This class is templated on DIGITIZABLE, which means that it has access to the typedefs in
the digitizer class. This class has as data a pointer to the specific APPCommand used to configure
it (Identified by the configuration_data_type typedef in the digitizer class. This class records the
raw data generator set name that it belongs to. This class holds a pointer to the specific detector
element that it is associated with (identified by the detector_element_type typedef in the digitizer
class). This class is derived from Generator<RAWTYPE> and AbsSimElement<STEPDATA>.
The derivation from Generator<RAWTYPE> allow it to be registered in the proper AbsGenera-
torElement for readout. The derivation from AbsSimElement<STEPDATA> allows for generic ac-
cess from the simulator stepping routine. This seemingly complex wrapper arrangement allows the
system to hide how the system treats readout and digitizing hits from the user’s digitizer classes.
This class also removes the need for a dynamic cast in the stepping routine and the search for a
corresponding detector element in the CDF geometry tree.

• AbsSimElementList: In the diagram is a class by this name. It is really just a list of pointers to
AbsSimElement instances. This class exists to support running many digitizers for the same de-
tector element simultaneously. For each detector element, there exists a list of digitizers that are
active for that element. The configuration section discussed how the user specifies that several
digitizers should be active for a given element.

• SimDigitzers: This class contains and controls access to all the major components in the digitizer
framework. It permits high-level functions to be performed such “ find the AbsSimElementList for
this PhysicalVolumeID” or “generate all the raw data and put them into this event” and “clear all
the digitizers” or “ inform all the digitizers that we are done with the particle set for the current
event” . It holds following:

CDF Simulation Review 12

• A map of simulator-specific PhysicalVolumeID instances to AbsSimElementList instances.
This is used in the simulator stepping routine to locate digitizer lists and invoke the hit digiti-
zation methods.

• A map from (set_name+detector_element_class_name) to APPCommand. This holds all the
unique instances of APPCommands used to configure the digitizers. It is used during initiali-
zation for assignment of APPCommands to digitizers.

• A map from CDF physical volume identifier to AbsSimElementList. This is the main owner of
all the underlying objects and lists. This map is used during initialization and cleanup.

• A map from set_name to AbsGeneratorElement. For each set_name there is a unique
AbsGeneratorElement instance, this map holds all of these.

• An instance of the ConfigFileReader class.

4.2.8 Factory
• SimMaker: This class has three methods that are used to generate various class instances needed

by the system. The method makeDigitizer() creates an instance of a digitizer and returns it
wrapped in an AbsSimElement<STEPDATA> instance. The method makeCommand() creates and
instance of APPCommand specific to the digitizer named in the argument. The method makeGen-
eratorElement() creates an instance of AbsGeneratorElement specific to the digitizer name given
as an argument.

The factory mechanism used in the calibration database system, if reused here, poses a few problems. The
calibration database factory relies on the fact that non-templated instances will be returned by the factory
functions. This may not be the case here because of the templating of AbsSimElement<STEPDATA>. This
can be fixed by introducing another empty abstract class from which AbsSimElement<STEPDATA> would
be derived, and have the factory return instances of this class. The problem with this is that SimDigitizers
would need to immediately dynamic_cast it back to the AbsSimElement<STEPDATA> that it is. Another
alternative would be to do a slight redesign of the factory class registration mechanism. Further develop-
ment of this topic is required.

4.3 Procedures
This section outlines a few important procedures that require further explanation, mostly in the form of
pseudocode.

4.3.1 Digitizer Initialization
Locate IDPairList produced by the geometry initialization module.
For each unique DE in the list

Locate list of (digitizer/set_name) pairs using ConfigFileRead
Create an AbsSimElementList
For each digitizer name in the list

Concatenate digitizer name and set_name
Use this name to look for an AppCommand in AppCommandMap
If none found

use the factory to generate an AppCommand
put the command into the AppCommandMap

locate AbsGeneratorElement in AbsGeneratorElementMap using
the set_name
if none found

use the factory to generate an AbsGeneratorElement
for this set_name, put it in AbsGeneratorElementMap

use the factory to generate a new SimElement (digitizer),
give the constructor the set_name, the AppCommand, and the
detector element.
Put the SimElement in the AbsSimElementList

CDF Simulation Review 13

End for
For each entry in the AbsSimElementList

Dynamic_cast entry into an AbsGenerator
Locate the AbsGeneratorElement in AbsGeneratorElementMap
Using the set_name
Add the AbsGenerator to the found AbsGeneratorElement

End for
Insert the AbsSimElementList into the AbsSimElementListMap by DE

Insert the AbsSimElementList into the AbsSimElementListMap by PV
End for

When this procedure is complete, four data structure inside SimDigitizers will be populated: the map of
simulator PVID to AbsSimElementList, the map of CDF geometry detector element to AbsSimElementList,
the map of (set_name + detector_element_class_name) to APPCommand, and the map of set_name to
AbsGeneratorElement.

4.3.2 Configuring Digitizers
Configuration can be done in two different ways. The first is to use the (set_name + detec-
tor_element_class_name) to locate the APPCommand used for configure a set of digitizers. The second is
to use the CDF geometry detector element ID to locate a specific SimElement, then ask it for the APPCom-
mand. It must be noted that the unique ID used to identify a CDF geometry detector element might need to
be the detector element’s physical volume ID.

It is envisioned that the APPCommand object associated with a digitizer will contain a simple group of data
items that are set by the APPCommand handler.

4.3.3 Creation of Raw Data
Calling SimDigitzers::generateRawData(AbsEvent) will essentially do the following:

For each entry in the AbsGeneratorElementMap
Entry->addToEvent(AbsEvent)

End for

The class diagram has notes that further outline the procedure for filling the event with raw data.

5 Questions Addressed - Part 1 (paraphrased)

5.1 CDF standard Generator Output Format?
During the review, everyone agreed that it is important to have standard format for generator output. It was
also agreed that this format should be a StorableObject of the CDF EDM. In Section 3.5 we made a brief
statement concerning the requirements for event generator output. This object would be both the mecha-
nism through which simulated event information is presented to the detector simulation and the mechanism
by which analysts gain access to the MC “truth” information.

5.2 How should new versions of GEANT be introduced?
The mechanism we propose introduces the physics simulation engine (currently GEANT3) to the simula-
tion system in two ways:

• the simulation geometry;

• the particle “stepping” mechanism.

To minimize the effects from changing to a new simulation engine (GEANT3 to GEANT4, for example),
the dependence on the physics engine must be encapsulated. Our proposal encapsulates these dependencies

CDF Simulation Review 14

in different ways. The creation of the simulation geometry is encapsulated in the existing CDF geometry
system. We strongly recommend use of the “new” geometry system, and make a few recommendations for
additions.

The particle stepping mechanism is encapsulated using “generic programming” , i.e. a template-based sys-
tem. We introduce the concept of t+u�v6w.x�y	u
y , which defines the behavior and typedefs the rest of the
system expects from the physics simulation. z3{
|.}6~���{
� encapsulates the information generated by the
physics simulation. New physics simulations (or new versions of the simulation) would be handled by in-
troducing new classes that are models of the �3�
�.�.���	�
� concept.

In order to track minor version changes (for different releases of the GEANT3 product), it should be suffi-
cient to tag the raw data objects with an RPCID that indicates that they were created by the simulation, and
with what set of parameters — including the version of GEANT used.

5.3 How should output be organized?
Energy losses and radiation length integrated over trajectory? We make no comment on the physics content
required, beyond stating that one of the required outputs is the “raw” data format of the subdetector. The
exact definition of what is that “ raw” data format is left somewhat to the discretion of the subdetector soft-
ware leaders. In all cases, this “raw” data format should either be the DBANKs objects, or higher-level
C++ objects from which other code can create the DBANKs objects.

5.4 Should hits be stored and how?
We have not addressed the issue of whether hits should be stored. If they are to be stored, it is necessary for
them to be handled in a StorableObject of the EDM, and for this StorableObject to be designed in conjunc-
tion with the MCEvent class. The classes and tools designed by the subdetector groups should be reused for
this purpose.

5.5 How should random number streams be handled?
This is an item largely independent of the simulation review. In Section 3.9, we proposed the development
of a simple mechanism for the generation of random numbers. As we stated there, it should not be neces-
sary to include all of ROOT merely to generate random numbers.

5.6 Interactive GEANT?
We have not addressed interactive use of GEANT in the simulation system.

5.7 What about MC truth information?
MC truth information should be handled in the MCEvent class and in related classes, such as MCHit.

5.8 What about objects that need to save themselves such as magnetic
field?

This issue is very wide-ranging. Event data must be stored in the EDM. Other information could be stored
in databases (perhaps using the calibration database API). Each case must be handled individually. Having
objects save themselves is one implementation choice. Another choice would be to have such items as a
magnetic field object contain an EDM object, which does know how to stream itself.

5.9 Is it possible to have one object output (list of primary interactions)
instead of n-banks?

This should be deferred until the discussion of the Monte Carlo event class.

CDF Simulation Review 15

5.10 How should the particle DB be handled?
This should be deferred until the discussion of the Monte Carlo event class.

5.11 How does the input list of particles interact with the simulation output
list of particles?

This should be deferred until the discussion of the Monte Carlo event class.

5.12 Is it possible to have a generic description of an MC particle and a de-
scription of the hits?

This should be deferred until the discussion of the Monte Carlo event class.

6 Questions Addressed – Part 2 (paraphrased)

6.1 How do we make the declaration of geometry and simulation as fast
and efficient as possible while still keeping enough accounting infor-
mation to allow for fast lookup in stepping?

Our proposal for modification of the SimulationControl class includes a mechanism specifically designed
to optimize the efficiency of the stepping mechanism.

6.2 Can digitizers accessing the G3 specific common blocks be avoided?
Our proposal does not avoid the need to access GEANT3 specific information. We believe that it is best not
to do so, because the digitization process seems likely to be intimately tied to the physics simulation engine
— developers of digitization code are best served by allowing them access to the full complement of in-
formation provided by the physics simulation. Our proposal encapsulates the physics simulation in the�+�
�.�.���	�
�

 concept, and makes use template-based programming.

One way to reduce the amount of common block access could be to pass the associated CdfPhysicalVolume
instance in to the call to digitizeHit(). This information is then easily and quickly available.

6.3 Should CdfHitDigitizer be optional or obligatory? Is the CdfHitDigitizer
completely unnecessary?

In place of an abstract digitizer base class (akin to CdfHitDigitizer), we have proposed a template-based
solution. The closest relative of CdfHitDigitizer we propose is the DIGITIZEABLE concept, described
earlier.

6.4 Can the hit digitizer part of the system be improved?
We believe that the template based solution we propose retains the strengths of the current design, while
gaining still more flexibility. It also should make the work of those who will design and implement the
classes for the digitization of each subdetector easier, since they need to design only two classes (the ap-
propriate DIGITIZEABLE class, and the related CONFDATA class).

6.5 Can the dynamic cast in the digitizers from generic geometry element
to specific element be eliminated?

This wish is one of the major forces that guided us toward the template-based design. In our proposed de-
sign, the dynamic_cast is only used during configuration of the system. The more time-critical “stepping”
code does not need the dynamic_cast, yet retains the type safety required.

CDF Simulation Review 16

6.6 How should change over from current simulation to a new system be
managed? (Package and file collision problems)

It is likely that the classes of our proposed design have few, if any, name collisions. It should be possible to
build the entire structure below the SimulationControl class in both the current design and under our pro-
posal simultaneous. SimulationControl could then be changed from the current implementation to our pro-
posal when the underpinnings are ready.

The conditional compilation (#ifdef) system proposed by Chris Green will work, but care must be taken
to assure that source code (.cc) and header (.hh) files do not contain a mixture of old and new code. One
way to accomplish this is to rename the old code files with an identifying tag (such as OLD) in their names,
and to include them in the file of the correct name if the proper preprocessor switches are set. These files
can even be put into their own subdirectory.

7 Coding Recommendations
In the new design, there seem to be too many levels of abstraction and inheritance. Our proposal reduces
this.

Since this document describes the design of a framework, we have no specific coding recommendations,
except for the one in Section 3.3.2.

8 Physical Design
We would prefer that the sub-detector specific digitizers had name-only coupling with simulation control
and the simulator.

9 Documentation
The current documentation is too ROOT-specific. It gives the impression that the only way to make the
system go is by using ROOT.

10 Other Notes
The accompanying class diagram does not contain all the details required for a complete system. We sug-
gest having a follow-up meeting to discuss the design, if the proposal is accepted.

It has been mentioned that it is important to be able to reuse code from the current simulation system and
that a migration strategy would be preferred. We do not believe that the system here precludes reusing
some of the already-developed digitizers. To do this could require a wrapper or adaptor that will be placed
over the current digitizers to give them the look-and-feel of the new system and meet the system require-
ments. This will need further discussion.

